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Almr~t--The propagation of solid particle admixture in a flow through a fiat ehann~ is studied. 
The p ~  of diff~on and convective tranffer m well m mlid particle depmi~on due to 

gravity result in varying m~mi~ture concentration both in depth and longitudinally. 
The study of admiffiture longitudinal distribution is of great interest in a lot of applkatiom, 

therefore this paper gives the derivation of longitudinal d i f f~on  equation for a mean crcm-eection 
admixture concentration. 

The equation coetAin~ three effective parameters; i.e. convective tranffe~ velodty, longitudinal 
diffueion coefficient and particle depoaition time. These parameters integrally reflect local processes 
of matter tranffer u wetl as monumtum. 

The propomd model is spedfic and differs from Taylor equation for longitudinal diffusion, 
the fact of particle deposition and adhesion is taken into accounL As a result of particle deposition 
a sediment layer it formed on the channel bottom which increases in thickm~ with time. To 
descn'be this process balance conditions for the whole flow mass and admixture mau  on sediment 
~ r f a ~  are formulated and a condition for matter movement towards the ~ ,nn~l  bottom is derived 
that is different from zero due to particle adhesion. 

1. I N T R O D U C T I O N  

In the 1950s Taylor has formulated a problem, i.e. for three-dimensional equation of 
matter transfer in a tube or a channel to derive one-dimensional equation for longitudinal 
diffusion the solution of which properly describes a distribution of average particle 
concentration. 

The description of the transfer process based on a longitudinal diffusion equation 
significantly simplifies calculations for a research and allows to get sufficient information 
on admixture distribution. 

The field of application of the longitudinal diffusion equation is very wide, therefore 
the solution of Taylor problem is of  great scientific and practical significance. 

Taylor (1953, 1954) has given a classical example of solving the transfer problem of 
"passive" admixture in a circular tube at t--, ~ and initial concentration distribution-- 
Co(x). 

Taylor's works served as methodical base and a starting point for multiple research in 
this direction. 

The proposed one-dlmensional diffusion model refers to flows in which liquid and solid 
particles have different velocities. Besides, the solid particles which have reached the lower 
surface of a tube, are assumed to adhere to it and not to participate in a movement any 
m o r e .  

The longitudinal ditfnsion equation derived here, si£,nificantly differs from Taylor 
equation as well as Sayre (1969) and Sfimer (1971) equations. 

More recently an original contribution on the subject has been made by Smith (1983). 

2. H A R D  P A R T I C L E  A D M I X T U R E  T R A N S F E R  E Q U A T I O N  

Assume that liquid and admixture particles fill the flow region completely and represent 
two continuumR with densities p, (i ffi 1, 2). 

Consider a case when a flow contains a large quantity of particles but their volume 
concentration is small s < I. Assume that sizes of solid particles are small compared with 
the characteristic linear scales of turbulence. 
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Consider a suspension flow as two-phase system. The continuity equations for each 
phase may be written as: 

OP___2m + Oplvl, = O, 
Ot Ox, 

OP2 "l- OP~,, 2, = O, • = 1,2,3 

[ ! ]  

where p~ and p, = continuum densities of liquid and solid particles; vm~ and 
v2~ = components of continuum velocities for liquid and solid particles. 

Separate phase densities may be expressed in terms of  volume concentration of solid 
particles s and true densities of liquid and solid particles, dl and d2, respectively. 

We have: 
p, = (1 -- s)dl, 02 - $d2. [2] 

Then the second equation of the system [1] is following; 

05 05~21 
O-t + ~ = O. [3] 

According to the method of the turbulent flow description we represent flow param- 
eters as a sum of their averaged values and pulsation components: 

s = S + s ' ,  v, .= V,.+v:. ,  i =  1, 2 [4] 

where S and V,. = averaged values o f  volume concentration and velocity components; s" 
and v~. = pulsation components. 

Equation [3] may be rewritten as 

OS OS(V,~- g,,) aSVi, Os'vk 
o--i + Ox, ~ Ox, - Ox, [5] 

where the difference V,. - VI, is a relative averaged velocity of admixture in a flow. 
Assume that the averaged horizontal continuum velocities of solid and liquid particles 

coincide and the vertical ones differ by a. We have: 

V~,=Vi.-a6,~, (6,0=0, a #.B, 6 . . -  I). [61 

The a-value denotes particle deposition velocity in a gravity field and is called a 
hydraulic grain size. If sofid particles of admixture have more or less equal sizes the a-value 
may be considered constant. 

Taking into consideration[6] we get 

OS OS OSV~, as'v;. 
ot a T +  a--FZ, = -  ox, {7] 

Let s'- and v;,-parameters correlation be proportional to the S-function gradient. 

OS 
s'v - -  T = .  [8] 

u~p 
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In this equality ~ is a tensor of diffusion coefficients which is 

~ = - ~ [9] 

in the case of isotropy diffusion. 
Equation [7] using [8] may be written as 

as as ~ s v , , = _ ~  ,, . 
a--i - a ~-3x3 -t ax. ~xp [10] 

3. D I F F U S I O N  E Q U A T I O N  I N  A P L A N E  P A R A L L E L  F L O W  

Consider transfer of admixture of solid particles in a plane parallel flow of H depth. 
Let Z-axis be directed vertically upwards and X-axis in the flow direction. According to 
the case studied the liquid particle velocity vector will have only one, different from zero, 
component- Vx(z ). 

Taking this fact into consideration, [10] may be written as: 

as as as a ( a s h + _ 0  ' 5  
at ayz+V,(z)~=~\ ~ ]  Oz " 

[ l  l ]  

Assume that in [11] the longitudinal flow velocity and transfer coefficient do not differ 
from corresponding parameters in a homogeneous flow which does not contain admixture 
particles. This assumption is justified to some extent by a previously assumed condition 
that particle volume concentration is small. In fact, the presence of solid particles changes 
the turbulent flow pattern and affects the mass transfer intensity. The transfer equation 
subject to this effect and more complex effects are derived in Barenblatt (1953) and 
Nikolaevskii (1963). The difficulties to find solutions of this equation are discussed in 
works of Buyevich (1965). 

Suppose that ~ coefficient is a constant value equal to molecular diffusion coefficient. 
Equation [11] in this case describes solid particle transfer process in a laminar flow. 

4. B O U N D A R Y  C O N D I T I O N S  

Assume that solid panicles settle down on the bottom of the channel and form a layer 
ofh (t, x) thickness, in this layer the particles do not move and their volume concentration 
is equal to s. .  

We shall consider deposit layer boundary as discontinuity surface on which a number 
of flow paramcters change abruptly: 

[,q ~ o, b,l ¢ o, H ~ o 

1 
v. = - 6o,v,. + p2v2.), p = p, + P2 p 

[12] 

where p -- mixture density; a = exterior normal vector to deposit layer surface; v,-mixture 
velocity component normal to layer surface. 

Solid particle phase flow is equal to s + .  v~,,  where s + and v~, are concentration value 
and normal component of phase velocity on the upper boundary of the layer. The 
corresponding values for deposit layer are s -  -- s .  and v£, = 0. 

We assume that the angle between Z-axis direction and normal vector-to-layer surface 
is small. Then an equation for the same flow for the accepted model[ll] may be written 
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as" 

[13] 

Suppose the matter layer of the second phase at the upper flow boundary not to form, 
then we accept the following condition 

) Oz + aS .-s = 0. [14] 

Let us find an equation for the thickness of a deposit layer on the channel bottom. From 
the comdderations of the matter balance of the second phase at the interface we have 

Oh 
(s, - S/,.k)D,= (vz, S),.h, D, ~, ~ [15] 

where D, = normal velocity of layer boundary motion. Equations [13]-[15] include two 
parameters, i.e. s ,  and v~ , .~ ,  which can not be found within the model studied; to 
determine these parameters it is necessary to make use of experimental data and more 
detailed theory. A review of the works in this field is presented in Mednikov (1980). 

5. DERIVATION OF O N E - D I M E N S I O N A L  MATTER T R A N S F E R  MODEL 

Equation [11] shows that admixture distribution in a flow is due to two factors, i.e. 
convective transfer and turbulent diffusion. Both processes may be taken into account in 
a one-dimensional diffusion model by including effective parameters the values of which 
integrally depend on a flow velocity and local transfer coeff~ents. 

To build such a model we make use of the procedure described in Maron (1978). 
Assume that a deposit layer thickness is h ~{ H and that a deposit layer does not 

considerably affect the velocity distribution. Formulate condition [13] at z :ffi 0: 

e +aS = (vz.-s),.o. 
zm0 

[16] 

Include the following dimensionless parameters and variables 

~0t x z S E 

y _  UH, p e f a H ,  • ffi , (a 
[17] 

~0 and So are typical values of transfer coefficient and concentration; U is a flow velocity. 
Equation [11] and boundary conditions [14] and [16] in terms of dimensiouless variables 

will be e x p ~  as follows: 

0 / )Oc\ 

ac -- a ) P e  c ~ .  ° = O. (XOI)--~ + Pe c)~ .  = O, [X(~/) ~ + (I [191 
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Average particle cross-section concentration is 

0(,, ~) = f~ c(~, ~, 7) On. [20] 

Integrating the terms of [18] across channel cross-section and taking into account [19] we 
get: 

aO ~0 I~ Oc -& + Y'~ + You (O( t l ) - l )~ -~d~+aPec / , . 0 f f i 0 ,  

0 =0(~,~), ~>0,  - ~ o < ~  <oo. 
[2t] 

Let the function qJ (x, ~, q) ffi c (x, ~, n) - 0 (x, ~) be introduced. 
Combining the terms of [18] and [21] we get an equation for ~ ffi= ql(x, ~, 7): 

OO0x - P c  __.0~ % ( q ) ~  ffi - Y(O(q) -  1 ) ~  - Y(O(~/)- 1) 

- y-~-; + Y (O(q) - l) d~ + ~ Pe (~/,w-o 4- O). 

[22] 

To find a solution use the successive approximations method and substitute ¢ ffi 0, q e(0, 1) 
into the r.h.s, of [22]. Such an approximation is based on the fact that for times which 
are much greater than a diffusion constant Hallo admixture concentration in depth is 
almost equalised and only slight deviations of local concentration from the average value 
are observed. These deviations are due to heterogeneous (becanse of a velocity profile) 
admixture convictive transfer. 

As a result of the substitution we have: 

For t h ~  functions 
self-conjugate form: 

+ ~ ee (~,/,-o + 0). [23] 

l 0 Fp . .O# l  [26] 

The boundary conditions for function ~ are: 

( X ( q ) ~  + P c , ) , . ,  = -PeO.  

[24] 

[X(~ ) -~  + ( 1 -  ~ , ) P e * l . 0  = - ( 1 -  ~)Pe O. 

Suppose the initial condition be ~(0, ~, q ) =  0. Introduce the following functions: 

Pe f~ %(qg'de/' P(q) = X(q)" r(q). [25] / ' ( 7 )  exp 

an q ffi differentiation operator in [23] may be written in a 
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Using this operator we represent [23] as: 

o¢, 
L(¢,) = ~ +F,  

O0 
F - -  Y(O(n) - 1 ) ~  - f ( T ,  ~), [27] 

1--- u Ve(~,/ , .o + 0). 

The solution of [27] and subsequent approximations to solution of [22] are sought as 
a series with respect to eigenfunctiom X,(n): 

The eigenfunctions X.(n) satisfy the following Sturm-Liouville problem: 

[P(n)x~(n)]' + ;~,,2r(n)x,(n) = O, x, = x,(n), o < n < I, 

[ • (7)X;,(n ) + Pc X,(n)],. ~., = 0. 

Here ~, is an eigenvalue of the mentioned problem. 
We substitute a series [28] into an integral form of [21]: 

O0 O0 ~ .  a, c~u, 

[28] 

[29] 

~0 I 0 = 0(T, ~), a. ffi ( ~ ( n ) -  1)x.(n) d~. [301 

To determine unknown functions u,(z, ~) we should multiply the left-hand and 
fight-hand parts of  [27] by rXn(n) and integrate with respect to n from 0 to 1. Taking into 
consideration boundary conditions [24] and [29] we get an equation for a function u,(T, ~): 

+ ~,2u~ --- Pe b.O - Yc. ~ - d.f~(T, ~), u,(T, ), a~ 

T > 0, - oo < d < ~ < b < oo, b. = X.(0) - X.(1)r(1), [31] 

c. = f~ r ( ~ ( n ) -  l)X. d~, ~, = X.(0)+ Pe b,. 

The solution of  [31] for initial condition u,(0, ~ ) =  0 is 

I0 I: u.(r, ~) - b. ee  exp [ -  ~2(~ _ s)]O(s, ~) ds - c. Y exp [ -  2,,2(T - s)] 

~O(s, ~) f "  [32] x - - - ~  cb - a~ Jo exp [ -  2,,~(T - s ) ] f ( s , ~ ) d s  
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substitute [32] into [30] 

ao oo ~. ~ f~ oo(s, ~) + Y ~  + Y Pe t exp [ -  ~2(~ _ s)] ~ ds 

• -nll- Jo e x p t - ~ 2 ( ' - s ) ]  0~ 2 

® ~ - s ) ] ~  ds. 

[33] 

Equation [33] includes two unknown functions, i.e. 0(x, ~) andf(T, ~). These two functions 
are interconnected: 

" Pe ~ b.X.(0) l" 
= • Pe 0 -t- .L'-n ~ J0 exp [ -  ~2(~ _ s)]0(s, ~) ds [34] 

,, ~ c.X.(O) l" OO(s. ~) 
- " . ~ t  ~ Jo e x p [ -  ~,2(~ - s ) ] ~  da 

d,x.(o) [" exp [ -  aJ(~ - s)] .  

Two integro-differential equations [33] and [34] constitute a one-dimensioual model to 
determine a mean flow cross-section concentration of admixture. The model takes into 
a~.~unt delay effects in equalizing concentration across the channel crosHection, particle 
sedimentation and formation of deposit layer. Based on this model one may solve 
problems for different initial and boundary conditions which once solved help to determine 
mean concentration 0(:, ~). A cross-section concentration distribution may be determined 
from the following relationship: 

c(~, ~, 7) = 0(~, ~) + 
u.(f, ~) 

,- ,  ~ x,(~). 13 5] 

The coefficients in [33]-[35] are obtained based on a solution of Sturm-Liouville problem 
[29]. 

6. S T U R M - L I O U V I L L E  P R O B L E M  [29] 

If we assume that diffusion coefficient is constant across a tube cross-section, i.e. 
X(q)--1, that corresponds to laminar flow conditions, a solution of Sturm-Liouville 
problem is following: 

( ' ) (  ,o ) 
X . ( ~ )  = exp  - ] Pe  ~ cos nm7 - ~ sin nn~ , 

pe 2 
~ 2  ffi 1 p e  2 + n 2n2 [36] IIx.ll2= 14 4 ~ n 2 ,  . 

In case of a turbulent flow a diffusion coefficient X(~t) changes acro~ the channel 
cross-section, therefore it is impossible to find an analytical solution of Sturm-Liouville 
problem [29]. 
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For a numerical solution of  this problem the Gauchy conditions are given at # = 0: 

Pe 
,1",(0) = 1, X~,(0)= - ~  [37] 

x . ( o )  

It may be shown that X,(0) # 0. Further on there was used an iterative process of choosing 
such values of ,1,2 at which the solution of [29] satisfies a condition at q -- 1. 

7. THE COEFFICIENTS [31] 

In a laminar flow the velocity profile is 

O(r/) -- 6~(1 -- 7) [38] 

Coefficients a~, b,, c, and d~ arc: 

:.= _~,{, + <_,).o,<p~p°_ ~po r, ,~, L -<- '~'<'<P½P°]}' 

1 
b,= 1 - ( -  iy 'exp~Pe, 

1 p©] [391 c, = ~ [ P e -  6 -  (Pc + 6 ) ( -  1)" exp ~ 

' ] 4 - - 1 +  I - ( -  ly 'exp P c .  

When determining these coefficients for a turbulent flow those approximations of 
velocity profile and turbulent diffusion coefficient were used that were proposed by 
Reichardt (1951): 

115_~o~) + 7.8 1 6 6 0.336)] ] [ 
6~= 11.1, ~ =0.4, ~ =11-2,1,  ~ = ( 1 -  o.,)Re., 

R e ,  = , E = D + (l - o~2)(1 + 2oJ 2) [401 

where D is a molecular diffusion coefficient. 
Using [40] we may determine U and ~. 

Dispersion equation 

8. ASYMPTOTIC FOR t--* oo 

f~ o~p [-  ~'(, - ,)]o(,, ¢)d~ ~, °('~----2) [411 

Taking into account [41] we may easily determine f(z,  ~) using [34] and then substitute 
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it into [33]. As a result we get an equation which contains only one function 0(z, ~): 

00 00 020 
: - + v = + r o = x - ~ . . ,  0 =0(~,~), ~>0, -~<d<~<b<oo.  [42] 

In this equation 

v=)" l + , ' e ~ , ~  g ~ / 

® ~ ( ¢ n  aP~.g,O,,) K =  Y2n~ " 
1 

r = ~ p e ~ ,  
g 

g =  l + a  Pe , ~ .  t'e . , ~ . j  

"_ c.X,(o) 

g2 = Pe i b,X.(O) [43] 

The parameters of [42] may be also found using the method described in Taylor's 
papers. We get the following expressions: 

r(v/) d~ &! - • Pe (~, + ~2~),  

PetJo ,t ,-~ -Vjo p(~) 
P 1 

r = • Pe $2, P = y~ [@(TI) - lit(s) d~, 

f ' f l ( . )  
l ] o ' ~  ~ l ' d~ - '  

"=-,-'Opef' d~' 0'--~~o for--(~) ' 
Jo r(,O 

~0 l R(,s) • ~3 = [~(~)- llK,(,) d,,  ~, = ~ + r(~---~ r(~)' 

[~ J'o d~ ~ ' . ( , ) _ l / P d ~ ) - '  ~ , o = , + , -  ,-~+jo,-T~yo,~jkjo,-~ , 

R(~) = ~ r( . )  d,.  [44] 

These formulas do not require a solution of  Sturm-Liouville problem. 
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Equation [42] contains three dimensionless effective parameters, i.e. K -- a longitudinal 
diffusion coefficient accounting for the processes of  local diffusion, convective transfer and 
particle deposition, V = convective transfer velocity and F = a parameter accounting for 
particle separation from the flow as a result of their deposition on the channel bottom. 

If particles do not deposit (a = 0) and stick to the channel bottom (1= = 01), [36] 
transfers into Taylor equation. If particles deposit (a ~ 0) but do not remain still on the 
channel bottom (la = 01) [36] transfers into a convective diffusion equation (IF = 01) 
derived in Lurie & Maron (1979). 

Equation [42] gives an asymptotic distribution of admixture particles concentration 
when z ~ov. In a turbulent flow due to intensive mixing such a distribution is observed 
very soon after the process has initiated (t ,,,/'/2/6.o). Therefore [42] solution in fact may 
be used from the beginning of the process. Equation [42] contains a term FO and is 
analogous to a longitudinal diffusion equation for radioactive admixture (Maron 1978). 
But in the case considered this term characterised particle disappearance from a flow as 
a result of deposition on the channel bottom. 

The dispersion of particles injected into a flow at the entrance of channel may be 
represented as: 

~r 2 = 2K¢ [45] 

where ~ denotes a dispersion. 
The dispersion-time law does not differ from the linear law. 

9. E Q U A T I O N  [42] P A R A M E T E R S  D E T E R M I N A T I O N  

Plots of V, K, F as functions of Pe number are given in figures 1--6. Based on these 
plots we may conclude about the effect of a- and Pc-parameters on values of the coefficients 
in [42]. 

It follows from the plots that a convective transfer velocity V, when = ~ 0 and Pe ~ 0 
differ slightly from a mean flow velocity. The effective diffusion coefficient K depends more 
on a- and Pc-parameters. 

10. A D M I X T U R E  C O N C E N T R A T I O N  P R O F I L E S  F O R  A T U R B U L E N T  F L O W  

Let distribution of mean admixture concentration described by the solution of [42] 
satisfy the following conditions: 

0(0,  ~) = O, O('c, O) = 1, O('L oo) = O. [46] 

I .10 

1.02 

094  

0.90 
0 0.4 0 8 1.2 1 6 2.0 2.4 2.8 3.2 

Figure 1. Laminar flow convective Lmnffer velocity vs particle settling velocity at diffe~nt  values 
of  a-parameter.  R e =  10 2, S o =  10 2. (1) ,, = 0 ;  (2) = =0.5;  (3) = ffi 1. 



LONGITUDINAL DIFIru'SlON OF' SOLID PAJ~TtCL~ ADMIXTURE IN A FLOW TH~OUG~B A ~ 581 

.E_ 

1,0 

09 

08 

07 

06 

0.5 
0 

,-,,. 

04  08  1.2 1.6 2 0  2.4 2.8 3.2 

Pl  

Figme 2. Laminar  flow longitudinal diffusion ¢oe~cient  vs particle settling velocity at  different 
values o f  ~ R e  = 10 2, Sc = 10 2, (1) = = 0; (2) ~, = 0.5; (3) ~, = 1. K~ = Tay lo r  c o e f f ~ t  for  

Re = tO 2, S c -  I0  2. 
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Figure 3. l ' -valuc vs Pc-va lue  ( l a m i n a r  flow). R c  - 10=, S c  - 10 2, (1)  a - 0.5; (2 )  a - l .  
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Figure 4. Turbulent flow longitudinal diffusion co¢t~cient vs particle selling velocity. R e -  104, 
S o -  10=. (1) = -  0;,(2) a ,  0.5;(3) = ,  I . K =  - Taylor co¢ffkieatt  for Re - 10',S¢ - 102. 

The solution of [42] which corresponds to the above conditions may be represented as 
follows: 

= 2 = ( r  
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Figure 5. F-value vs Pc-value ( tu rbu len t  flow). Re  - 10', Sc  - 102. (1) a - 0.5; (2) a - 1. 
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Figure  6. Concen t ra t ion  profile for pa r t i c le  a d m i x t u r e  in a tu rbu len t  flow. R e  - 104, Sc  - 102 at  
Pe - 0 and  a - 0 in cross-sect ion ~" - V. ( I )  ~- - 0.95; (2) y - 1; (3) ~ - 1.05. 

Based on this solution we may determine a local concentration using [35] in which 

u , ( z , ~ ) = -  Y~-~2 c. ~P;gx d,)~-~ +~22(b,--~d,~. [4s] 

The eigenfunctions X,(rt) may be determined from a solution of  Sturm-Liouville problem 
for a certain set of  parameters which characterise a turbulent flow. 

Figures 7-9 gives admixture concentration profiles at different values of  = and Pe for 
Reynolds number Re ffi 10 4 and Schmidt number Sc = 10 2. The cross-section for which 
these profiles are determined at different time instants, is at a distance of ~ ffi V from the 
channel entrance. The plots show that admixture deposition at ~, = 0 result in a marked 
assymmetry of a profile form, since admixture particles accumulate the channel bottom. 
If = ~ 0, a concentration profile is more symmetric as a portion of  admixttLre particles 
sticks to the channel bottom and a deposit layer increases, its thickness satisfies the 
following equation: 

aA = = Pe.(  
0-~" = c ,  c / ~ . 0  ~ 0 - g 1 0 0  [49] 

- c ,  \ g  

where d = h/H. When derivating this relationship it was assumed that c, ~ c/~.o. 
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Figure 7. Concentrat ion profile for  particle  admixture  in a turbulent  flow. Re - 10 4, S o , -  10 2 at 
Pc == 1 arid ot = 0 in c r o ~ s e c t i o n  ~ == V. (1) • = 0.95; (2) • .= 1; (3) • - 1.05. 
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Figure8.  Conoentration profile for lmr t ic leadmixture ina  turbulemflow" P c -  1 0 4 , S c -  102at P c -  1 
and a - 1 in ~ l" - V. (1)  • - 0.95; (2)  • - 1; (3)  r - 1.05. 

Another formula may be used to determine c(T, ~, #). This formula is derived using 
Taylor method. We get: 

c(,. ~.,)--- 0(,. ~ ~2(1 - ~.(,)) + 

00 { . , o -  ~,(,))+ ¢' ~ r . .  ) a(~)a~, 
[5o] 

where 

$(") = Jo [ # ( s ) -  1] as. 

11. C O N C L U S I O N S  

The equations proposed may be used to describe admixture propagation which occurs 
in riven and channek. 

To research aerosol dispersion it is n___,~omtry to develop a theory in which the effect 
of particle adhedon to tube inner surface is considered. We may assume that ~ # 0 and 
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Pe ffi 0 while describing aerosol transfer when particle motion time in a tube is small 
compared to a characteristic deposition time. 
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